Analytical models for the in-plane shear behavior of confined masonry walls with aspect ratios greater than one subjected to lateral loads

Authors

  • Saúl Pérez American University, UAM

DOI:

https://doi.org/10.62407/rciya.v2i2.100

Keywords:

In-plane share, aspect ratio, monotonic lateral load, plastic hinges, confined masonry

Abstract

Many analytical models have been proposed to predict the shear capacity of confined masonry walls, but they have been formulated from experimental tests of walls with a unit aspect ratio (h/L = 1). This study determines the in-plane shear behavior of confined masonry walls with aspect ratios greater than one (h/L > 1) subjected to lateral loads modeled with the modified wide column methodology using two analytical models. Experimental results found in the literature were used to validate these analytical models. The experimental tests deal with isolated confined masonry walls, with different aspect ratios, subjected to gravitational loads and monotonic lateral loads. The shear-distortion curves of the experimental tests and the analytical results were compared and a good correlation was obtained in the elastic range, which is a priority for the structural design phase.

Downloads

Download data is not yet available.

References

Alcocer, S., Hernández, H., & Sandoval, H. (2013). Envolvente de resistencia lateral de piso para estructuras de mampostería confinada. Revista de Ingeniería Sísmica (89), 24-54. ttps://www.redalyc.org/pdf/618/61829627002.pdf

Álvarez, J. J. (1996). Some topics of the seismic behavior of confined masonry structures. Eleventh World Conference on Earthquake Engineering. Elsevier Science Ltd.

Beyer, K., & Priestley, M. (2008). Inelastic wide-column models for U-shaped reinforced concrete walls. Journal of Earthquake Engineering, 1-33. doi:https://doi.org/10.1080/13632460801922571n

Cruz, O. (2010). Ensayos de 7 muros de mampostería confinada a escala natural de distinta longitud y con piezas multiperforadas de arcilla. [Tesis de Maestría. Universidad Nacional Autónoma de México] https://hdl.handle.net/20.500.14330/TES01000665853

Fernández, L., Sosa, M., & Varela, J. (2014). Resistencia en el plano de muros de mampostería confinada: Efecto de la relación de aspecto. XIX Congreso Nacional de Ingeniería Estructural. [Congreso] https://smie.com.mx/sistemas/memorias/index.php?avanzada=0&where-0=&keyword-0=mamposteria+confinada#seccion-busqueda

Flores, L., & Alcocer, S. M. (2001). Estudio analítico de estructuras de mampostería

confinada. [Tesis de Maestría]. Universidad Nacional Autónoma de México]. https://hdl.handle.net/20.500.14330/TES01000227643

Hernández Sampieri, R., Fernández, C., & Baptista, P. (2010). Metodología de la investigación (5 ed.). McGraw Hill Educación. https://www.smujerescoahuila.gob.mx/wp-content/uploads/2020/05/Sampieri.Met.Inv.pdf

Hidalgo, P. A., Mayes, H. D., McNivel, & Clough, R. W. (1978). Cyclic loading tests of masonry piers, Volume 1 - height to width ratio of 2. UCB/EERC-78/27. https://www.nrc.gov/docs/ML2000/ML20009E149.pdf

Hidalgo, P. A., Mayes, H. D., McNivel, & Clough, R. W. (1979). Cyclic loading tests of masonry piers, Volume 3 - height to width ratio of 0.5. UCB/EERC-79/12. https://www.nrc.gov/docs/ML2000/ML20009E159.pdf

Ishibashi, K., & Kastumata, H. (1994). A study on nonlinear finite element analysis of confined masonry walls. Cuaderno de Investigación (15). http://cidbimena.desastres.hn/docum/crid/Febrero2004/pdf/eng/doc8505/doc8505.pdf

Matsumura, A. (1998). Shear strength of reinforced masonry walls. Proceedings of Ninth World Conference on Earthquake Engineering, VI, págs. 121-126. https://www.iitk.ac.in/nicee/wcee/article/9_vol6_121.pdf

Ministerio de Transporte e Infraestructura (2017). Norma mínima de diseño y construcción de mampostería. https://sjnavarro.files.wordpress.com/2008/08/norma-minima-mamposteria_mti-mp-001.pdf

Pérez Gavilán, J. J., Flores, L., & Alcocer, S. (2013). Efecto de la esbeltez en la resistencia de muros de mampostería confinada. Revista de Ingeniería Sísmica (89), 55-76. https://www.redalyc.org/pdf/618/61829627003.pdf

Riahi, Z., Elwood, K. J., & Alcocer, S. M. (2009). Backbone model for confined masonry walls for performance-based seismic design. Journal of Structural Engineering, 135, 644-654. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000012

Ruíz García, J., & Alcocer, M. (1998). Desempeño experimental de estructuras de mampostería confinada rehabilitadas mediante el uso de malla de alambre. Revista de Ingeniería Sísmica, 59, 59-79. https://doi.org/10.18867/ris.59.222

Sánchez, S., Arroyo, R., & Jerez, S. (2010). Modelo de un grado de libertad para evaluar la curva carga lateral-distorsión en muros de mampostería confinada. Revista de Ingeniería Sísmica (83), 25-42. https://www.scielo.org.mx/pdf/ris/n83/n83a2.pdf

Siete, B. J. (2011). Fragilidad basada en desplazamientos para edificaciones de mampostería confinada. [Tesis de Maestría]. Universidad Michoacana de San Nicolás de Hidalgo. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/4031

Tomaževič, M. (1999). Earthquake-resistant design of masonry buildings. Series of Innovation in Structures and Construction. Imperial College Press. doi: https://doi.org/10.1142/p055

Tomaževič, M., & Klemenc, I. (1998). Seismic behaviour of confined masonry walls. Earthquake Engineering & Structural Dynamics, 26(10), 1059-1071. Doi: https://doi.org/10.1002/(SICI)1096-9845(199710)26:10%3C1059::AID-EQE694%3E3.0.CO;2-M

Zúñiga, O., & Terán, A. (2008). Evaluación basada en desplazamientos de edificaciones de mampostería confinada. Revista de Ingeniería Sísmica (79), 25-48. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-092X2008000200002

Published

2024-04-17

How to Cite

Pérez, S. . (2024). Analytical models for the in-plane shear behavior of confined masonry walls with aspect ratios greater than one subjected to lateral loads. Scientific Journal of Engineering and Architecture_iyA, 2(2), 27–38. https://doi.org/10.62407/rciya.v2i2.100