Power and irradiance generated by the photoactivation lamps used in the clinical area of the Dentistry Faculty at the American University (UAM)

Authors

  • María Alejandrina Cordonero Espinoza Universidad Americana, UAM

DOI:

https://doi.org/10.62407/ros.v1i1.79

Keywords:

Power,, irradiance, wavelength, photons of light, digital radiometer, light spectrum

Abstract

The use of photoactivation lamps is essential in dentistry to ensure the adhesion of light-activated
polymeric materials. The quality of light influences polymerization, a crucial step in dental treatments. Therefore, these lamps must provide the required properties for these materials. Inadequate light can negatively affect treatments. Objective: To evaluate the power and
irradiance of photoactivation lamps in the School of Dentistry at the University of America.
Problem: What is the power and irradiance produced by dental photoactivation lamps in the
clinical area of the School of Dentistry at the University of America?
Materials and Methods: The power (mW) and irradiance (mW/cm²) of thirteen lamps used in
the clinical area and two external control lamps were measured. Readings were obtained using
a digital radiometer, Bluephase® II Ivoclar, with the lamps placed on a stand and activated for
ten seconds. Results: It was found that seven lamps had irradiance exceeding 300 mW/cm² at a
distance of 0 mm, decreasing at greater distances. Twelve lamps recorded lower values than the
control lamps. Lamps older than five years exhibited lower power and irradiance than newer ones. Conclusion: Smaller-diameter lamps had higher irradiance than larger-diameter lamps. Only four lamps in the clinical area exhibited an acceptable condition in terms of permanent and reversible damage. This study underscores the importance of light quality in dentistry.

Downloads

Download data is not yet available.

References

André, C. B., Nima, G., Sebold, M., Giannini, M., & Price, R. B. (2018). Stability of the light output, oral cavity tip accessibility in posterior region and emission spectrum of light-curing units, Operative Dentistry, 43(4), 398-407.

Assaf, Fahd, JC y Sabbagh, (2020). Evaluación del rendimiento de las unidades de foto polimerización dentales mediante radiómetros: una revisión narrativa. Revista de la Sociedad Internacional de Odontología Preventiva y Comunitaria, 10 (1), 1-8. https://doi.org/10.4103/jispcd.JISPCD_407_19

Barrancos, M. (2007). Operatoria Dental integración clínica. 4ta ed. Buenos Aires, Argentin. Editorial Médica Panamericana.

Bouschlicher, M. R., Vargas, M. A., & Boyer, D. B. (1997). Effect of composite type, light intensity, configuration factor, and laser polymerization on polymerization contraction forces. American journal of dentistry, 10(2), 88–96. https://pubmed.ncbi.nlm.nih.gov/9545896/

Cardoso, P., & Decurcio, R. (2015). CARILLAS lentes de contacto e fragmentos cerámicos. 1ra ed. Florianópolis, Brasil: Editora Ponto. https://www.academia.edu/43695905/Sold_to

Carrillo Sánchez, C., Monroy Pedraza, M. (2009) Métodos de activación de la fotopolimerización Parte II. Revista. ADM. 66(5):18-28. https://www.medigraphic.com/pdfs/adm/od-2009/od95d.pdf

Chaple Gil, A., Montenegro Ojeda, Y., & Álvarez Rodríguez, J. (2016). Evolución histórica de las lámparas de fotopolimerización. Revista Habanera de Ciencias Médicas, 15(1), 8-16 http://www.revhabanera.sld.cu/index.php/rhab/article/view/1006

COLTOLUX®: https://lam.coltene.co/products/restoration/curing-lights/coltolux-led/

Dos Santos, G.B., Monte Alto, R.V., Sampaio Filho, H.R., Da Silva, E.M., & Fellows, E. (2008) Light transmission on dental resin composites. Dental Materials, 24(5), 571–576. https://doi.org/10.1016/j.dental.2007.06.015

Encalada (2018) Evaluación de desempeño de la intensidad de la salida de luz de las lámparas de fotocurado utilizadas por los estudiantes de noveno semestre de la facultad piloto de odontología. [Tesis de Especialidad para dentista cirujano], inédita. Universidad de Guayaquil. http://repositorio.ug.edu.ec/handle/redug/29498

Félix, C., & Price, R. (2003) The Effect of Distance from Light Source on Light Intensity from Curing Lights. The Journal of Adhesive Dentistry https://pubmed.ncbi.nlm.nih.gov/15008335/

Hasanain, F. A. & Nassar, H., M. (2021) Utilizing Light Cure Units: A Concise Narrative Review. Polymers 13(10), 1596; https://doi.org/10.3390/polym13101596

Ivoclar & Vivadent (2020). Radiómetro LED Bluephase Meter II. https://www.medicalexpo.es/prod/ivoclar-vivadent/product-72878-740310.html

Jarquín. Bonilla, (2016). Aumento de la temperatura en la superfície dental durante la fotopolimerización.Odontología Vital 25:17-22.

Kopperud, S. E., Rukke, H. V., Kopperud, H. M., & Bruzell, E. M. (2017). Light curing procedures - performance, knowledge level and safety awareness among dentists. Journal of dentistry, 58, 67–73. https://doi.org/10.1016/j.jdent.2017.02.002

Lira Oliver, A., & Guevara Mon, A. B. (2017). Irradiancia y radiancia. Comprensión de los conceptos de irradiancia y radiancia para los espacios arquitectónicos así como las unidades radiométricas y fotométricas. Práctica 15. Facultad de Arquitectura, Universidad Nacional Autónoma de México. http://leias.fa.unam.mx/wp-content/uploads/2018/07/180515_Practica15_LES.pdf.

Meda C., R.,E. (2013) Medición de la intensidad de la luz de las lámparas de fotocurado utilizadas por los estudiantes en la Facultad de Odontología en la Universidad San Carlos de Guatemala. [Tesis para optar cirujano dentista. Universidad de San Carlos de Guatemala]. https://core.ac.uk/download/pdf/35292919.pdf

Meléndez, D., Delgado-Cotrina, L., & Tay, Y. (2021). La ciencia detrás de las lámparas de polimerización LED. https://www.researchgate.net/publication/353909863_La_ciencia_detras_de_las_lamparas_de_polimerizacion_LED/citations

Meza, M. & Dávila, M. (2020). Influencia de la distancia de la guía de luz sobre la intensidad de fotopolimerización de los dispositivos led en Odontología, Huancayo 2019 [Tesis de Especialidad, UNIVERSIDAD PRIVADA DE HUANCAYO “FRANKLIN ROOSEVELT”]. https://repositorio.uroosevelt.edu.pe/.

Mitton, B., Wilson, N. (2001) El uso y mantenimiento de unidades de activación de luz visible en la práctica general. British Dental Journal 191, 82–86. https://doi.org/10.1038/sj.bdj.4801103

Melara Mungía, Arreguis Gambús, M., Jimeno, F., Martínez, S., & L. Bellet Dalmau (2008) Actualización de los diferentes tipos de lámparas de foto polimerización. Revisión de la literatura. Odontología Pediátrica 16(3) pp. 140-152. https://www.odontologiapediatrica.com/wp-content/uploads/2018/05/123_revrevision1.pdf

Fan, P. L., Schumacher, R. M., Azzolin, K., Geary, R., & Eichmiller, F. C. (2002). Curing-light intensity and depth of cure of resin-based composites tested according to international standards. The Journal of the American Dental Association, 133(4), 429-434. DOI:https://doi.org/10.14219/jada.archive.2002.0200

Pereira, A. G., Raposo, L. H. A., Teixeira, D. N. R., Gonzaga, R. C. Q., Cardoso, I. O., Soares, C. J., & Soares, P. V. (2016). Influence of battery level of a cordless LED unit on the properties of a nanofilled composite resin. Operative dentistry, 41(4), 409-416. https://doi.org/10.2341/15-200-L

Piura López, J. (2012) Metodología de la investigación científica: Un enfoque integrador. 7a Ed. Managua, Nicaragua. Editorial PAVSA. pp. 28 -223

Ramos Garrido, Y. (2015) Estudio de la potencia lumínica de las lámparas de tipo halógena de foto polimerización, asignadas en las clínicas de estomatología de la USS. [Tesis para optar a cirujano dentista] Universidad de Señor de Sipián. https://hdl.handle.net/20.500.12802/147

Price, R., Michaud, P. L., Labrie, D., Rueggeberg, F. A., & Sullivan, B. (2014). Localized irradiance distribution found in dental light curing units. Journal of Dentistry, 42(2), 129-139. https://doi.org/10.1016/j.jdent.2013.11.014

Price, R., Shortall, A., Palin, W. (2014) Contemporary Issues in Light Curing. Oper Dent 1 39 (1) 4–14. doi: https://doi.org/10.2341/13-067-LIT

Rizzante et al, (2018) Physico-mechanical properties of resin cement light cured through different ceramic spacers. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 85. https://doi10.1016/j.jmbbm.2018.06.001

Shimokawa, C. A., Harlow, J. E., Turbino, M. L., & Price, R. B. (2016). Ability of four dental radiometers to measure the light output from nine curing lights. Journal of dentistry, 54, 48–55. https://doi.org/10.1016/j.jdent.2016.08.010

Shortall A. C, Hadis M. A, Palin W. (2021) On the inaccuracies of dental radiometers. Plos One 16(1) 1-27 https://doi.org/10.1371/journal.pone.0245830

Shortall, A., Price, R., MacKenzie, L. et al. (2016) Directrices para la selección, uso y mantenimiento de unidades de fotocurado LED – Parte II. British Dental Journal, 221, 551–554. https://doi.org/10.1038/sj.bdj.2016.814

Tomer et al., (2018) Curing Lights In Dentistry And Its Implications. A Review. International Journal of Innovative Research and Advanced Studies (IJIRAS). Volume 5 Issue 9.

Tongtaksin, A., & Leevailoj, C. (2017). Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units. Operative dentistry, 42(5), 497–504. https://doi.org/10.2341/15-294-L

Zhu, S., Platt, J. (2011) Curing Efficiency of Three Different Curing Modes at Different Distances for Four Composites. Oper Dent, 36 (4) 362–371. doi: https://doi.org/10.2341/09-245-L

Published

2024-03-18

How to Cite

Cordonero Espinoza, M. A. . (2024). Power and irradiance generated by the photoactivation lamps used in the clinical area of the Dentistry Faculty at the American University (UAM). Stomarium Dental Journal, 1(1), 1–20. https://doi.org/10.62407/ros.v1i1.79